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In the CTOCD-DZ (continuous transformation of origin of current density-diamagnetic zero) formulation of
coupled Hartree-Fock theory for magnetic response of closed-shell systems, induced current density at each
point is calculated with the gauge origin at that point. In addition to its economy and accuracy for total
current maps, CTOCD-DZ is shown to yield a unique and physically motivated definition of, and symmetry
criteria for, orbital contributions to current density. This leads to a few-electron interpretation of ring currents.
Only the four HOMO electrons of an aromatic (4n+2)-electron monocycle contribute significantly to the
ring current, and in general only a small subset of the high-lyingπ electrons dominate the more complex
patterns of current in polycyclicπ systems. Benzene, naphthalene, hexacene, pyracylene, coronene, and
corannulene are treated as examples.

1. Introduction

Ring currents play an important role in the interpretation of
magnetic properties of conjugated and, in particular, aromatic
systems.1-5 They can now be visualized and quantitatively
mapped for molecules of significant size with accurate and
economical distributed-origin ab initio methods, which can be
used to probe traditional models and explanations of magnetic
properties.6-15

The purpose of the present paper is to show that a particular
formulation of the distributed-origin approach, the CTOCD-
DZ (continuous transformation of origin of current density-
diamagnetic zero) method,6,7 lends itself to ready interpretation
of current density maps. It will be shown, first, that the definition
of orbital contributions to the total induced current density is
at its simplest for CTOCD-DZ, and second, that the derived
sum-over-states formula for current density gives easily applied
criteria for activity of an orbital. In particular, an analogue of
the famous Hu¨ckel (4n+2) rule can be used to answer the
question of how many and which electrons in a conjugated
system are counted as responsible for ring currents. It can be
proved that exactlyfour electrons produce thewhole of the
induced diatropicπ current in a (4n+2)-electron monocycle,
and justtwoare responsible for the induced paratropicπ current
of a 4n-electron monocycle.16 Similar simplifications apply to
polycyclic systems such as naphthalene and coronene, where
again four electrons produce the diamagnetic ring current. In
corannulene, which exhibits counter-rotating paramagnetic and
diamagnetic circulations,14 the diamagnetic rim and paramag-
netic hub currents arise from disjoint sets of four electrons each.
It will be seen that differences betweenπ systems in this respect
can be rationalized by pictorial molecular-orbital arguments.

Within the orbital approximation, the total (first-order) current
density distribution of a molecule can be formally partitioned
into orbital contributions,17

For a molecule in a static uniform magnetic field, the total

current density is invariant with respect to gauge transforma-
tions. In particular, apart from basis set effects, the current
density is independent of the choice of gauge origin, the formal
“center of rotation”. This is not true for the individual orbital
contributions, even in a complete basis. So far, the main interest
in origin transformations has been concerned with their effects
on the quality of current densities computed with finite basis
sets. Apart from some early work,18,19orbital contributions have
seldom been discussed, although partitioning intoσ and π
current densities has been found useful for planar conjugated
systems.12,19,20The reason for this apparent lack of interest in
orbital contributions may well be uncertainty relating to their
status.

That orbital contributions do in fact depend on the choice of
origin is illustrated in Figure 1 by maps of orbital and total
π-electron current densities for the benzene molecule, computed
in a large basis (see Appendix).20 Maps are shown for two
choices of gauge: (a) a single, fixed origin at the center of
symmetry (themonocentricchoice) and (b) the CTOCD-DZ
distribution where the current density at each point is computed
with that point as origin (theipsocentricchoice). In (a) all three
occupiedπ orbitals, and therefore all sixπ electrons, make
comparable contributions to the totalπ current density. On the
other hand, in (b) the two 1a2u electrons make almost no
contribution and only thefour electrons in the degenerate 1e1g

HOMO are mobile in the presence of a magnetic field normal
to the molecular plane. Similar behavior will be described below
for several aromatic systems. An explanation of these observa-
tions requires careful consideration of the definition of orbital
contributions to total current density.

The structure of the present paper is as follows. The theory
of the response of anN-electron system to an external magnetic
field is summarized, and the ipsocentric (CTOCD-DZ) formula-
tion is defined in section 2. Orbital current densities are defined
as sums over states, and the unique physical status of the
formulation is discussed in section 3. This leads to selection
rules for contributing orbitals and a few-electron classification
of ring-current systems in section 4. Section 5 shows how orbital
contributions rationalize ring currents in a variety ofπ sys-
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tems: benzene, naphthalene, hexacene, pyracylene, coronene,
and corannulene. Section 6 draws some general conclusions.
Technical details of the computations and current density maps
are given in the Appendix.

2. Current Density and Origin Transformations

In the Schro¨dinger formulation of quantum theory the charge
and current densities of anN-electron system in stateΨ are8,21

and

where∫ ‚ ‚ ‚ dτ′ represents summation over all electron spins
and integration over the spatial coordinates of all the electrons
except one, for which the coordinates are set tor , andA is the
magnetic vector potential, related to the magnetic field byB )
∇ × A. For a constant uniform field, the simplest form ofA is

in whichd, the origin of vector potential, is explicitly included.

Let the Schro¨dinger equation in the absence of the magnetic
field be

in which V is the usual potential energy function. The Hamil-
tonian to first order in the fieldB is21

whereL̂ is the angular momentum operator for rotation about
d and is the sum of one-electron terms likel̂ ) (r - d) × p̂,
where p̂ ) - ip∇ is the linear momentum operator for one
electron.

We are interested here in systems with a closed-shell ground
stateΨ0. By perturbation theory, the first-order correction to
Ψ0 is

and the current density to first order is

The termj (d) is the conventional “diamagnetic” current density,
the classical response of a charge distribution to the applied
field. This is the sole contribution to the current density in an
atom with origind at the nucleus. In general, the flow lines of
j (d) are circles in planes normal to the applied field, with the
magnitude,|j (d)|, at each point proportional to both radius and
local charge density. The termj (p) is the “paramagnetic” current
density and, by (6), is a typical quantum-mechanical “sum over
states” , its value depending on the accessibility of excited states
via rotational (magnetic dipole moment) transitions. It can be
regarded as representing the interference to the free flow ofj (d)

that is caused by the noncylindrical molecular field.
The exact total current densityj (1) is independent of the gauge

origin d, but its partitioning betweenj (d) and j (p) is not, as is
clear from the above description of the “diamagnetic” circula-
tion. It has long been recognized21 that the distinction between
diamagnetic and paramagnetic terms has no physical meaning,
except for an atom with gauge origin on the nucleus, whenj (p)

is zero. The choice of origin is less obvious in molecules. One
approach has been to choosed at the center of charge, but this
is theoretically arbitrary and it is neither necessary nor always
computationally convenient to restrict the choice to just one
center.

Choice of appropriate origin distribution has been a central
preoccupation over the past 30 years in the development of
practical methods of computing electron current densities and
derived magnetic properties such as magnetizability and nuclear
shielding tensors. Widely used methods that make use of a
discrete distribution of origins include IGLO,22,23 in which
individual origins at the charge centroids of localized orbitals
are used, and GIAO,24 developed from London’s extension of
Hückel theory for molecules in a magnetic field.2 On the other
hand, Keith and Bader6 pointed out that the origin distribution

Figure 1. Orbital contributions to theπ ring current in benzene. Maps
are computed in (a) 1-center and (b) CTOCD-DZ methods. The orbital
contributions are plotted for (i) 1a2u, (ii) 1e1g(x), and (iii) 1e1g(y)
molecular orbitals, and (iv) shows the total computedπ current.
Computational details are given in the Appendix.
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can be a continuous function, with the induced current density
j (1)(r ) at each pointr in space computed with respect tod(r ) as
origin, leading to the equivalent CSGT6 and CTOCD7 formula-
tions, of which the simplest, theipsocentric CTOCD-DZ
formulation, is obtained by treating each pointr as its own
origin. From (7) it is seen that the diamagnetic componentj (d)

vanishes whend is set equal tor and thetotal current density
then reduces to

With this equation, the concept of a classical diamagnetic
response to the magnetic field has been subsumed into a single
description in which both diamagnetic and paramagnetic effects
can be interpreted in terms of the accessibility of excited states,
through the perturbation expansion of the first-order wave
function Ψ0

(1).
In a system with elements of symmetry, the interpretation of

current densities can make use of symmetry arguments as
normally invoked in discussions of transitions between states
in spectroscopy. To do this, note that the angular momentum
operator for rotation about any pointd can be writtenL̂ (d) )
L̂ (0) - d × P̂ whereL̂ (0) now refers to rotation about the origin
of coordinates andP̂, theN-electron linear momentum operator,
has the symmetry of a translation. Thus, a rotation of charge
about the pointd has been replaced by a rotation about the origin
0 and a displacement term. Foranychoice ofd, the first-order
wave function is then

The term Ψ0
(p) gives rise to the conventional paramagnetic

contributionj (p) and is determined by the accessibility of states
throughrotational transitions. It follows that in the CTOCD-
DZ formulation, Ψ0

(d) is responsible for the corresponding
diamagnetic contribution and is determined by the accessibility
of states throughtranslationaltransitions. This sum-over-states
representation ofj (d) can be derived directly from the commuta-
tor relation

from which it follows, in the ipsocentric formulation (d replaced
by r in the evaluation of the current density), that

The right-hand side of (11) is the conventional diamagnetic
contribution j (d), with respect to the origin of coordinates as
center of rotation.

Thus,both Ψ0
(p) and Ψ0

(d), and thereforej (p) and j (d), have
the form of sums over states, although they obey different
selection rules.

3. Orbital Current Densities

In the orbital approximation for a closed-shell ground state,
theN-electron wave functionΨ0 is a Slater determinant ofN/2

doubly occupied orbitals, chosen to be real,

with charge density

Since L̂ and P̂ are sums of one-electron operators, the first-
order wave functionΨ0

(1) becomes a sum over states in which
the ΨI are singly excited configurationsΨn

p obtained fromΨ0

by excitation of one electron from an occupied orbitalψn(n e
N/2) to a virtual (unoccupied) orbitalψp(p > N/2). The single
sum overN-electron states can then be replaced by a double
sum over orbitals and their excitations, i.e.,

and the first-order current density becomes a sum oforbital
contributions

with orbital current densities

If, for simplicity, we neglect self-consistency corrections and
suppose, at first, that the orbitalsψn are eigenfunctions of a
one-electron HamiltonianĤ0 with eigenvaluesεn, the first-order
correction toψn becomes

whereψn
(1)(r;d ) indicates that the first-order wave function is

a function of electron positionr and depends parametrically on
the displacementd.

In the ipsocentric CTOCD-DZ formulation, the orbital current
densityjn

(1) is therefore wholly determined by the accessibility
of the virtual (unoccupied) orbitals from the occupied orbital
ψn.

For other choices of gauge origin, however, it is only the
paramagneticcurrent densityjn

(p) that is determined by (16).
The simple occupied-to-virtual orbital interpretation is then lost
for the diamagnetic contributionjn

(d), because of the intrusion
of nonphysical occupied-to-occupied orbital transitions. To see
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this we note that, as long as the potential energy function inĤ0

is a local operator, the orbital form of (11) is

where

(degenerate orbitals are to be treated in blocks in the sum of
orbital contributions). It follows that, for an electron in orbital
ψn, all the other orbitalsψm(m*n) must be deemed to be
accessible for interpretation of the orbital diamagnetic current
density, whereas only theVirtual orbitals are required for the
paramagnetic current density. As a result, although the total
current density of the system remains independent of choice of
origin d, the orbital current densities themselves do not, because
choice ofd fixes the diamagnetic and paramagnetic contributions
to jn

(1), and therefore, the weight of the nonphysical occupied-
to-occupied transitions. Thus, if

is that part ofψn
(d) containing the transitions fromψn to other

occupiedorbitals ψm, then, denoting the first-order current
density calculated atr with gauge origin atd by jn

(1)(r ;d),

This is the equation that expresses the general origin dependence
of the orbital current density. For an arbitrary choice of origin,
(20) includes nonphysical terms. If, however, we make the
ipsocentric choice,d ) r , the term in square brackets on the
RHS of (20) removesall occupied-to-occupied contributions
from each separate orbital current density. It is this critical
simplification that leads to the interpretation of current densities
in terms of small numbers of electrons near to a molecular
“Fermi level”. Self-consistency corrections do not change this
conclusion.

For any other choice of gauge origin, the nonphysical
contributions vanish only when the orbital current densities (20)
are summed, the contribution of a transitionψn f ψm in jn

(1)

canceling that ofψm f ψn in jm
(1). Cancellation of nonphysical

terms can also occur within well-defined blocks of orbitals even
when d * r , perhaps most significantly in planar conjugated
systems, where the symmetry separation betweenσ and π
orbitals is maintained when the field is perpendicular to the
molecular plane, and it is therefore permissible to make the
traditional division intoσ andπ circulations, irrespective of the
choice of gauge origin distribution.

Self-consistency can now be considered briefly. In practice,
theψn are Hartree-Fock orbitals and the first-order orbital wave
functionsψn

(1) are calculated by means of coupled Hartree-
Fock theory. The zeroth-order Hamiltonian is the Fock operator

where V is the nuclear attraction energy,Ĵ is the coulomb

operator andK̂ is the nonlocal exchange operator. The presence
of K̂ means that the commutator relation for∇, (10), is no longer
strictly valid, and additional terms enter the representation of
the diamagnetic current. The nonlocal operator also affects the
first-order Hamiltonian, which now contains a first-order
correctionK̂(1) to the exchange terms from the field-induced
changes in the orbitals. However,K̂(1) itself already depends
on theψn

(1) and a recursive expansion ofψn
(1) shows that the

new terms are of order (∆ε)-2, and may normally be expected

jn
(d)(r ) ) iep

me
[ψn∇ψn

(d) - ψn
(d)∇ψn]d)r ) - e2

2me
(B × r )ψn

2

(17)

ψn
(d) )

e

2me
[d × ∑

m*n

ψm

〈ψm|p̂|ψn〉

εm - εn
] ‚ B (18)

ψ′n(r;d ) )
e

2me
[d × ∑

m)1

N/2

′ψm(r )
〈ψm|p̂|ψn〉

εm - εn
] ‚ B (19)

jn
(1)(r;d ) ) jn

(1)(r ; 0) - iep
me

[ψn∇ψ′n - ψ′n∇ψn] (20)
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Figure 2. Orbital energy level diagram for benzene (RHF/6-31G**
energies in hartree units). The arrows represent translational transitions,
and the filled circles denote the occupancies.

Figure 3. Orbital contributions to theπ current densities in benzene
ions. (a) The sole occupied orbital of the (4+) cation, 1a2u; (b) the
(negligible) combined contribution of the 1a2u and 1e1g orbitals of the
(4-) anion; (c) the (dominant) contribution of the four electrons in
1e2u HOMO of the (4-) anion; and (d) the totalπ current in the (4-)
anion. Computational details are given in the Appendix.
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to be small (except in cases of near degeneracy of HOMO and
LUMO when the simple orbital approximation, in any case, loses
its validity).

4. Symmetry

To summarize, the primary conclusions of the analysis so
far are

(a) orbital current densities are dependent on the choice of
gauge origind;

(b) in all but the CTOCD-DZ formulation, the orbital current
densities contain nonphysical terms corresponding to transitions
between occupied orbitals, canceling on summation;

(c) in this ipsocentric formulation, the current densities are
expressed wholly as sums over states, and may be analyzed in
terms of the accessibility of excited states via translational and
rotational transitions.

This last conclusion can be exploited to give a simple few-
electron model of ring currents inπ systems.

Consider a planar conjugated system in which the ring
currents are induced by a magnetic field at right angles to the
molecular plane. In general, three factors will determine the
existence and strength of the contribution of an occupied-to-
unoccupied orbital transitionψn f ψp. They are symmetry,
spatial distribution, and energy.

Symmetrydetermines whether a transition contributes at all
to the current density. IfG is the point group of the field-free
molecule, then a contribution can be classified as conventionally

diamagnetic or paramagnetic (with respect to a position un-
shifted by all operations ofG) using symmetries inG. Let R|

represent rotation about the field direction, andT⊥ translation
at right angles to the field, and let the symbolsΓ(ψ), Γ(R|),
Γ(T⊥), andΓ0, denote representations of an orbital (or degenerate
set of orbitals), rotation around the field direction, translations
at right angles to the field, and the totally symmetric representa-
tion in G, respectively. A transitionψn f ψp then has

(a) a contribution tojn
(1) that is conventionallydiamagnetic

if the direct product of representationsΓ(ψn) × Γ(ψp) ×
Γ(T⊥)containsΓ0,

(b) a contribution tojn
(1) that is conventionallyparamagnetic

if Γ(ψn) × Γ(ψp) × Γ(R|)containsΓ0,

otherwise, the transition has (c) exactly zero contribution.

A transition may obey (a) or (b), both (a) and (b), or neither
(a) nor (b), depending onψn, ψp, and G. In simple systems,
such as those with only one conjugated circuit, the conventional
dia/paramagnetic labels have clear and exclusive implications.16

The spatial distribution of a pair of orbitals affects the
magnitude of a symmetry-allowed contribution. The two orbitals
should occupy the same region of space and the functionsψp

and R̂|ψn or T̂⊥ψn should have similar nodal structures if a
transition is to be significant. For example, two orbitals with
similar nodal surfaces related by rotationR̂| will tend to give a
large paramagnetic contribution, whereas an orbitalψp resulting
from bisection of ψn by a single additional nodal surface

Figure 4. Orbital contributions to the current density in naphthalene. (a) The total current for the six electrons in the lower-lying orbitals 1b2u, 1b3g,
and 1b1g; (b) the sum of orbital contributions of the four electrons in the near-degenerate pair 1au and 2b2u; (c) the completeπ map; and (d) the
orbital energy level diagram showing theπ-π* transitions responsible for the orbital currents in (b). Black arrows represent translational transitions
and white arrows rotational transitions from occupied levels. The nodal characteristics of the orbitals corresponding to the Hu¨ckel π manifold are
indicated schematically on the right of (d); the broken scale indicates omission of high-lying 3b1g and 4b2u virtual orbitals. Computational details
are given in the Appendix.
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perpendicular to the molecular plane will tend to give a large
diamagnetic contribution, all other things being equal.

In addition to the above factors that act on the transition
integrals in the numerators of the sum-over-states formulation,
the transition energies in the denominators should be small. In
conjunction with the requirement thatψn be occupied andψp

empty, this then suggests a major role for the HOMO-LUMO
transition, symmetry permitting, and more generally implies that
the total current density will be dominated by transitions from
a few high-lying occupied orbitals into a small subspace of low-
lying virtual orbitals. For large systems this can be an important
simplification of the many-electron picture, as it shows that the
number of mobile electrons need not scale with system size.
When localized components are coupled by an interaction, their
orbital energies spread out into bands, and the occupied-
unoccupied gap typically decreases. The number of electrons
with both symmetry- and energy-allowed access to virtual
orbitals can then fall from a few per component to a few per
assemblage.

Symmetry, spatial distribution and node count, and energy
are of course linked inπ systems, but the three-fold division
gives a handy set of rules of thumb for interpretation and
prediction of computed currents. They are applied in the
following section to some illustrative examples.

The rules also suggest a useful shorthand for describing the
physical origins of ring currents inπ systems. If the magnetic
response is dominated byn1, n2, andn3 electrons with transitions
allowed, respectively, under translational only, rotational only
and both selection rules, we will label it (n1d + n2p + n3dp),
for diamagnetic, paramagnetic, and mixed response. In the same
way that many closed-shellπ systems obey a (4n+2) Hückel
rule, it turns out that many are (4d) ring-current systems, and

(n1 + n2 + n3) is generally significantly smaller than the total
π-electron count.

5. Examples

(i) Benzene (4d).In the Hückel theory ofπ-electron systems,
the molecular orbitals of a conjugated hydrocarbon are repre-
sented as linear combinations of 2pπ atomic orbitals forming
an “active space” which is usually rich enough in symmetry to
represent the orbital excitations that dominate the magnetic
response properties of the system. Figure 2 shows theπ-orbital
energy level diagram for benzene, with RHF/6-31G** orbital
energies added to show the scale.

The Figure also shows the transitions between orbital levels
allowed by the selection rules. In the point groupD6h, the
rotation Rz belongs to representation a2g so that no purely
rotational transitions are allowed within theπ manifold. All π

Figure 5. Orbital contributions to the current density in hexacene. (a)
The total current for the 22π electrons in the lower lying orbitals (total
π except 3au and 4b2u); (b) the sum of orbital contributions of the four
electrons in the near-degenerate pair 3au and 4b2u; and (c) the complete
π map. Computational details are given in the Appendix.

Figure 6. Orbital contributions to the current density in pyracylene.
(a) The total current for the eight electrons in the lower lying orbitals
(total π except 1au, 3b3u, and 2b2g); (b) the sum of orbital contributions
of the four electrons in the near-degenerate pair 1au and 3b3u; (c) the
contribution of the HOMO, 2b2g; (d) the completeπ map; and (e) the
orbital energy level diagram showing theπ-π* transitions responsible
for the orbital currents in (b) and (c). Black arrows represent
translational transitions and white arrow rotational transition from
occupied levels. Computational details are given in the Appendix.
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ring currents are therefore purely diamagnetic. The translations
(Tx, Ty) belong to e1u, and transitions are allowed only between
neighboringorbital levels of benzene.

In the ipsocentric formulation, therefore, the four electrons
in the degenerate 1e1g HOMO contribute to the current density
of the π electrons via transitions to the 1e2u LUMO. The two
electrons in 1a2u are inactive because the only symmetry-
accessible states, 1e1g, are occupied.

By contrast, as demonstrated by Figure 1a, the interpretation
of the π current density is quite different in the single-center
formulation. All three occupied orbitals make significant
contributions to the total current density. The patterns and
magnitudes are consistent with Lenz’s-law diamagnetic circula-
tion around the center of the ring, with orbital current densities
given by jn

(d). As we have seen, such a response is possible
only if all orbitals are deemed to be accessible injn

(d). Thus, in
this formulation, level 1e1g is accessible to the electrons in 1a2u

despite being fully occupied, and 1a2u is accessible to the
electrons in 1e1g, providing a paramagnetic contribution from a
downwardtranslational transition. These contributions in to and
out of 1a2u cancel in the sum over orbitals.

The nature of the current densities of closed-shell ions of
benzene can also be predicted from the orbital diagram (Figure
2). Removal of the four electrons of 1e1g makes these orbitals
available to twoπ electrons in 1a2u, providing a two-electron
diamagnetic ring current in the tetracation. Addition of four
electrons to the 1e2u LUMO of neutral benzene blocks the

transitions from 1e1g, but the four electrons in the 1e2u HOMO
of thetetraanionthen have access to 1b2g, so that a four-electron
diamagnetic ring current is maintained. These predictions are
confirmed by ab initio CTOCD-DZ calculations at the frozen
geometry of neutral benzene (Figure 3). The cation is a (2d)
system and the anion is a (4d) system. Addition of two further
electrons to give the hexaanion would fill the available Hu¨ckel
active space, removing theπ-π* ring currents. In this case,
however, computation shows that the hypothetical 12π system
has a small HOMO-LUMO gap to several low-lying virtual
levels. There is an appreciable total diamagnetic ring current
which is a superposition of small contributions from the
electrons in the 1b2g, 1e2u, and 1e1g occupied orbitals via
transitions to virtual orbitals which are outside the scope of the
strict Hückel model.

General symmetry considerations show that all aromatic
(4n+2) monocycles can be expected to be (4d) systems, and
that the splitting of HOMO and LUMO in antiaromatic (4n)
monocycles leads to generic (2p) paratropicity. This is discussed
in detail elsewhere.16

(ii) Naphthalene (4d). The differences in the monocentric
and ipsocentric interpretations of the ring currents become more
interesting for systems with larger numbers ofπ electrons.
Figure 4 shows theπ current density maps for naphthalene in
the ipsocentric formulation: (a) the total current for the six
electrons of the lower-lying orbitals 1b2u, 1b3g, and 1b1g and
(b) the sum of orbital contributions of the four electrons in the

Figure 7. Orbital contributions to the current density in coronene. (a) The current arising from all but the four electrons in the HOMO 2e2u; (b)
the contribution of the four electrons in the HOMO 2e2u; (c) the completeπ map; and (d) the orbital energy level diagram showing theπ-π*
transitions responsible for the orbital currents in (b). The black arrow represents translational transition and the white arrow rotational transition
from the HOMO. Computational details are given in the Appendix.
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near-degenerate pair 1au and 2b2u, which is visually indistin-
guishable from (c), the fullπ map. It is clear from the maps
that only the four electrons in the near-degenerate HOMO pair
make significant contributions to the totalπ current density.

The π orbital energy level diagram of naphthalene, Figure
4d, shows the transitions from the near-degenerate HOMO pair,
1au and 2b2u, to low-lying virtual orbitals allowed by R
(rotational) and T (translational) selection rules. The symmetry
of the system isD2h and the pattern of energy levels is closely
related to that of the 10-membered monocyclic ring, with near-
degenerate HOMO and LUMO pairs. Symmetry forbids current
along the central bond, and the HOMO-LUMO transitions of
type T give rise to the four-electron diamagnetic circulation
around the perimeter of the carbon structure, as in the monocycle
itself. The formally allowed R transitions from 1au to 3b2u and
2b2u to 2au are evidently of less importance, as would be
expected from their larger energy denominators and the high
degree of cancellation in the transition moment caused by the
more complex nodal structure of the target orbital, as illustrated
by the orbital diagrams in Figure 4d.

Neutral naphthalene is therefore an essentially diamagnetic
system. Diamagnetism and the dominance of just four electrons
are features common to the whole family of linear acenes.

(iii) Hexacene (4d).Figure 5 showsπ current densities for
hexacene, including (a) the contribution of the 22 electrons in
orbitals below the (3au, 4b2u) HOMO pair and (b) the four-
electron diamagnetic circulations of the HOMO pair and (c)
total π.

The total π current is again dominated by the HOMO
contribution, which exhibits the characteristic concentration, or
“clustering” , of current density in the central region,12 with
the other 22 electrons providing only a uniform and weak
perimeter circulation. Hexacene and the other linear acenes are
therefore simple (4d) systems.

(iv) Pyracylene (4d+2p). The pictorial interpretation of
orbital contributions can also shed light on polycyclic systems
that exhibit coexisting diamagnetic and paramagnetic ring
currents. In pyracylene, the pentagonal rings are known to be
paratropic25-31 and Figure 6 shows that just three orbitals
determine theπ current map for this molecule.

Figure 8. Orbital contributions to the current density in corannulene. (a) The current arising from all but the eight electrons in the near-degenerate
2e′′1 and 2e′′2; (b) the contribution of the four electrons in the HOMO 2e′′1; (c) the contribution of the four electrons in the HOMO-1 2e′′2; (d) the
completeπ map; and (e) the orbital energy level diagram showing theπ-π* transitions responsible for the orbital currents in (b). The black arrows
represent translational transitions and the white arrows rotational transitions. Computational details are given in the Appendix.
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The near-degenerate 1au, 3b3u pair gives rise to a diamagnetic
circulation around the perimeter of the naphthalenic subunit,
and the 2b2g HOMO gives a circulation that is totally paramag-
netic both within each pentagon and around the molecular
perimeter. Superposition of the currents from these six electrons
yields the familiar pattern for pyracylene in which two paratropic
pentagons lie on either side of the diatropic central naphthalenoid
motif. This pattern is reinforced when the circulation of theσ
electrons is included in the total picture,30,32 and is consistent
with the NICS values calculated for the pentagons and hexagons
of this molecule.31

The orbital energy level diagram, Figure 6e, shows that the
current density maps are consistent with the allowedT and R
transitions from the higher occupied orbitals to the LUMO. The
LUMO 2b1g can be accessed byT transition from the near-
degenerate pair 1au and 3b3u to give four-electron diamagnetic
circulations, and by R transition from the HOMO 2b2g to give
two-electron paramagnetism. In the shorthand notation, pyra-
cylene is a (4d+2p) system.

(v) Coronene (4dp) and Corannulene (4d+4p).The patterns
of π currents in both coronene and corannulene have been
shown14 to consist of a superposition of a diamagnetic circulation
around the outer rim with a paramagnetic counter-circulation
on the inner hub. The outer circulation is the stronger in
coronene, whereas in corannulene it is the inner circulation that
is the stronger. This difference is explained when the orbital
analysis is invoked. The maps in Figure 7 demonstrate thatboth
the inner and outer circulations in coronene come from thefour
electrons in the degenerate 2e2u pair. The pattern of relevant
orbital levels illustrated in Figure 7d shows that the currents
can be interpreted in terms ofT and R transitions from the
HOMO to the two low-lying degenerate pairs of virtual orbitals.

In contrast, the maps in Figure 8 demonstrate thateight
electrons are responsible for theπ ring currents in corannulene
(the planar structure is discussed here, but no significant
differences are expected for the bowl ground state14). The orbital
level diagram in Figure 8e shows that the 3e′′1 LUMO pair can
be accessed via R transition by the four electrons in the 2e′′1
HOMO, and via T transition by the four electrons in the near-
HOMO 2e′′2 (the two occupied pairs are almost degenerate in
6-31G**, and their relative disposition is sensitive to basis set).
Thus, coronene is (4dp) but corannulene is (4d+4p). The
annulene-within-an-annulene model, which is disproved by the
ab initio calculation,14 would presumably have ranked both
systems as (4d+4d) ≡ (8d), with con-rotating diamagnetic rim
and hub currents.

The new orbital description also provides an interpretation
of the reversal of direction of ring current on the hub when
four electrons are added to give the 4-anion of corannulene.
The added electrons occupy the 3e′′1 LUMO of the neutral
molecule, thereby blocking access to the lower-lying electrons.
The R transition, which enables the inner paramagnetic circula-
tion in the neutral molecule, is now disabled, and the new pattern
of orbital levels in the anion leads tocon-rotatory diamagnetic
rim and hub currents.14

Many more examples can be quoted. Ring current maps are
currently available for carbon monocycles,33 the polyacenes up
to heptacene,12 the fused tetracycles acepleiadylene and diple-
iadiene,13 some polycyclic aromatic hydrocarbons based on
naphthalene,32 hexaethynylbenzene,34 and kekulene,15 and the
orbital description gives a tool for classifying the calculated
patterns in all of them.

6. Conclusion

Use of orbital contributions to electron current density has
been held back by difficulties in obtaining a unique definition.
It has been shown here that the ipsocentric gauge distribution
of the CTOCD-DZ (CSGT) method leads to a unique and
physically motivated definition, and hence to a few-electron
interpretation of ring currents. Rationalizations and predictions
of ring currents can now use arguments based on orbital
symmetry, spatial distribution, and energy to classifyπ systems.
As the magnetic response is attributed to a few mobile electrons
in high-lying orbitals, significant simplifications can be expected
for the largeπ systems encountered in biology and material
science.

Appendix

The geometries used in this paper are the theoretical 6-31G**/
SCF equilibrium geometries, computed with the CADPAC
program.35 The 6-31G** basis was also used for all calculations
of current densities except for those for benzene and its ions,
which used the larger “level 5” basis (12s8p4d /8s3p)f
[9s6p4d/6s3p].20 The computation of the maps was performed
with the Exeter version of the SYSMO suite of programs.36

The maps show theπ current density induced by unit
magnetic field acting at right angles to the molecular plane and
are, in all cases, plotted in the plane 1a0 above that of the nuclei.
This plane is close to the maximum ofπ current and electron
density and at this height there is little difference between
computed maps in the small and large bases. The contours show
the modulus|j | of current density with values 0.001× 4n ep/
mea0

4 (au) forn ) 0, 1, 2, ..., and the vectors represent in-plane
projections of current. In all plots the diamagnetic circulation
is shown anticlockwise, the paramagnetic circulation clockwise.

For benzene and its ions, the plotting area is a square of side
12a0, and the vectors are centered on the points of a 16× 16
grid. All the other maps are drawn to this scale except for
hexacene (Figure 5), for which a slightly smaller scale has been
used.

References and Notes

(1) Pauling, L.Chem. Phys. 1936, 4, 673.
(2) London, F.J. Phys. Radium1937, 8, 397.
(3) Pople, J. A.J. Chem. Phys. 1956, 24, 1111.
(4) Haigh, C. W.; Mallion, R. B.Prog. NMR Spectrosc. 1980, 13, 303.
(5) Garratt, P. J.Aromaticity; J. Wiley & Sons Ltd: New York, 1986.
(6) Keith, T. A.; Bader, R. F. W.Chem. Phys. Lett. 1993, 210, 223.
(7) Coriani, S.; Lazzeretti, P.; Malagoli, M.; Zanasi, R.Theoret. Chim.

Acta 1994, 89, 181.
(8) Keith, T. A.; Bader, R. F. W.J. Chem. Phys. 1993, 99, 3669.
(9) Zanasi, R.J. Chem. Phys. 1996, 105, 1460.

(10) Lazzeretti, P.; Malagoli, M.; Zanasi, R.Chem. Phys. Lett. 1994,
220, 299.

(11) Zanasi, R.; Lazzeretti, P.; Malagoli, M.; Piccinini, F.J. Chem. Phys.
1995, 102, 7150.

(12) Steiner, E.; Fowler, P. W.Int. J. Quantum Chem. 1996, 60, 609.
(13) Fowler, P. W.; Steiner, E.; Cadioli, B.; Zanasi, R.J. Phys. Chem.

1998, 102, 7297.
(14) Steiner, E.; Fowler, P. W.; Jenneskens, L. W.Angew. Chem. Int.

Ed. 2001, 40, 362.
(15) Steiner, E.; Fowler, P. W.; Jenneskens, L. W.; Acocella, A.Chem.

Commun.2001, 659.
(16) Steiner, E.; Fowler, P. W. Submitted for publication.
(17) Stevens, R. M.; Pitzer, R. M.; Lipscomb, W. N.J. Chem. Phys.

1963, 38, 550.
(18) Lipscomb, W. N.MTP. Int. ReV. Sci. Phys. Chem. 1972, 1, 167.
(19) Lazzeretti, P.; Rossi, E.; Zanasi, R.J. Chem. Phys. 1982, 77, 3129.
(20) Lazzeretti, P.; Malagoli, M.; Zanasi, R.J. Mol. Struct.: Theochem

1991, 234, 127.

Ring Currents in Conjugated Molecules J. Phys. Chem. A, Vol. 105, No. 41, 20019561



(21) Van Vleck, J. H.The Theory of Electric and Magnetic Susceptibili-
ties; Oxford University Press: London and New York, 1932.

(22) Kutzelnigg, W.Isr. J. Chem. 1980, 19, 193.
(23) Schindler, M.; Kutzelnigg, W.J. Chem. Phys. 1982, 76, 1919.
(24) Ditchfield, R.Mol. Phys. 1974, 27, 789.
(25) Coulson, C. A.; Mallion, R. B.J. Am. Chem. Soc. 1976, 98, 592.
(26) Mallion, R. B.Pure Appl. Chem. 1980, 52, 1541.
(27) Gomes, J. A. N. F.; Mallion, R. B.J. Org. Chem. 1981, 46, 719.
(28) Elser, V.; Haddon, R. C.Nature1987, 325, 792.
(29) De Castro, B. R. M.; Gomes, J. A. N. F.; Mallion, R. B.J. Mol.

Struct. (Theochem)1992, 260, 123.
(30) Fowler, P. W.; Zanasi, R.; Cadioli, B.; Steiner, E.Chem. Phys.

Lett. 1996, 251, 132.

(31) Schleyer, P. von, R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes,
N. J. R. van, E.J. Am. Chem. Soc. 1996, 118, 6317.

(32) Fowler, P. W.; Steiner, E.; Acocella, A.; Jenneskens, L. W.;
Havenith, R. W. A.J. Chem. Soc. Perkin Trans. 22001, 1058.

(33) Fowler, P. W.; Steiner, E.J. Phys. Chem. 1997, 101, 1409.
(34) Fowler, P. W.; Steiner, E.; Zanasi, R.; Cadioli, B.Mol. Phys. 1999,

96, 1099.
(35) Amos, R. D.; Rice, J. E.The Cambridge Analytical DeriVatiVes

Package, issue 4.0; Cambridge University Press: New York, 1987.
(36) Lazzeretti, P.; Zanasi, R.SYSMO Package; University of Modena:

Modean, Italy, 1980, with additional routines for evaluation and plotting
of current density by E. Steiner and P. W. Fowler (unpublished results).

9562 J. Phys. Chem. A, Vol. 105, No. 41, 2001 Steiner and Fowler


